

Nghiên cứu BCP (Calcium Phosphate Cơ Bản) trong điều kiện có mặt NPS và ứng dụng của chúng trong y học tái tạo xương

Tran Cam Tu ⁽¹⁾, Trinh Nhu Thuy ⁽²⁾, Bui Quoc Thang⁽³⁾, Nguyen Thi Thuong Huyen ⁽⁴⁾, Nguyen Dai Hai ⁽⁵⁾,

(1) Institute of Tropical Biology, VAST

(2) University of International

(3) Cho Ray Hospital

(4) University of Pedagogical of HCM city

(5) Institute of Applied Materials Science –VAST

Tế bào gốc trung mô có nguồn gốc từ mô mỡ người (AT-MSCs) có khả năng biệt hóa thành tế bào mỡ, tế bào tạo xương và tế bào sụn, đồng thời có thể điều hòa hệ miễn dịch. Chúng đã trở thành một công cụ hiệu quả trong lĩnh vực y học tái tạo và kỹ thuật mô. AT-MSCs có thể biệt hóa thành tế bào tạo xương khi có mặt các chất cảm ứng như dexamethasone, vitamin D, acid ascorbic, hEGF... Gần đây, một số vật liệu như nanosilica hoặc calcium phosphate cơ bản (basic calcium phosphate) nổi lên như các ứng viên tiềm năng trong việc hỗ trợ quá trình biệt hóa tế bào tạo xương từ AT-MSCs. Những vật liệu này có thể hỗ trợ tế bào gốc trung mô duy trì tính đa tiềm năng, kiểm soát độ bám dính, khả năng tăng sinh, cũng như định hướng biệt hóa tế bào với hiệu quả cao.

Tuy nhiên, còn nhiều vấn đề chưa được nghiên cứu và làm sáng tỏ. Trong nghiên cứu này, silica xốp nano (Nano Porous Silica – NPS) chứa strontium (Sr^{2+}) đã được tổng hợp. Chức năng kích thích quá trình biệt hóa tế bào tạo xương từ AT-MSCs của vật liệu này đã được khảo sát. Bên cạnh đó, calcium phosphate cơ bản (Basic Calcium Phosphate – BCP) với các tỷ lệ HA p : β -TCP khác nhau và kích thước lỗ xốp phù hợp cũng được tổng hợp nhằm đánh giá ảnh hưởng của chúng lên quá trình biệt hóa của AT-MSCs theo hướng dòng tế bào tạo xương. Hơn nữa, một điểm mới của nghiên cứu là phân biệt được tác động của hỗn hợp NPS và BCP (BCP/NPS) lên quá trình tạo xương của AT-MSCs.

Từ khóa: BCP, NPS, tế bào gốc, MSC, tạo xương.

Study BCP (Basic Calcium Phosphate) in presence NPS and its application in bone regenerative medicine

Tran Cam Tu ⁽¹⁾, Trinh Nhu Thuy ⁽²⁾, Bui Quoc Thang⁽³⁾, Nguyen Thi Thuong Huyen ⁽⁴⁾, Nguyen Dai Hai ⁽⁵⁾,

(6) Institute of Tropical Biology, VAST

(7) University of International

(8) Cho Ray Hospital

(9) University of Pedagogical of HCM city

(10) Institute of Applied Materials Science –VAST

Abstract

Mesenchymal stem cells derived from human adipose tissue (AT-MSCs) can differentiate into adipocyte, osteoblast and chondrocytes as well as modulate immune system. They became an effective tool in the field of regenerative medicine and tissue engineering. AT-MSCs can differentiate into osteoblast in the present of inductive chemicals such as dexamethasone, Vitamin D, ascorbic acid, hEGF... Recently, some materials such as nanosilica or basic calcium phosphate became potential candidates to support the osteoblast differentiation of AT-MSCs. These materials can be supported human mesenchymal stem cells to maintain their pluripotent and control the adhesion, proliferation as well as orientate cell differentiation with high efficiency. However, many issues have not been studied and understood. In this study, Nano

Porous Silica (NPS) contain strontium (Sr^{2+}) were synthesized. The study of its function to stimulate osteoblast differentiation from AT-MSCs was carried out. In addition, Basic Calcium Phosphate (BCP) with different ratio of HAp: β -TCP and appropriate pore size were synthesized and investigate their effect on AT-MSCs differentiation towards osteogenic cell line. Moreover, a new point of this study is discriminate the effect of the mixture NPS and BCP (BCP/NPS) on osteogenesis of AT-MSCs.

Key words: BCP, NPS, stem cell, MSC, osteogenesis